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1 INTRODUCTION 

Selenium (Se) toxicity to fish is primarily manifested via exposure of adult females to 

dietary organic Se and subsequent maternal transfer to the eggs, which, at sufficiently high 

concentrations, can result in larval deformities, edema, and mortality (Janz et al. 2010). Because 

the bioaccumulation potential of Se from the water column into the aquatic food web is highly 

dependent on site-specific biogeochemistry and food web characteristics, there is a wide range 

of water column Se concentrations across different site types that could result in a given Se 

concentration in fish tissue. Accordingly, there is a general consensus that fish tissue Se 

concentrations, especially in fish eggs, are most appropriate for evaluating whether Se 

concentrations in an aquatic system are posing risks to fish. Recently, DeForest et al. (2012) 

developed a proposed guideline for Se concentrations in fish eggs following the Canadian 

Council of Ministers of the Environment (CCME) protocol for developing guideline values. 

Although a fish tissue-based Se guideline is much more broadly applicable among sites than a 

water-based Se guideline, there is typically still a need to translate the fish tissue-based Se 

guideline to a site-specific water-based Se guideline because water Se concentrations can be 

more readily monitored and Se sources can be mitigated to achieve target Se concentrations in 

water. The objective of this evaluation is to review approaches for translating a fish tissue Se 
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concentration to a water Se concentration and to highlight key data gaps associated with the 

translations; if filled, the added information could reduce uncertainty in the available 

approaches. 

2 SELENIUM BIOACCUMULATION MODELS 

The issue of relating Se concentrations in fish tissue or aquatic bird eggs to water Se 

concentrations has been addressed in several publications over the last 20 years. Most of the Se 

bioaccumulation models are partitioning models that relate water Se concentrations to fish or 

bird tissue Se concentrations via multiple food chain steps (Skorupa and Ohlendorf 1991; 

Ohlendorf and Santolo 1994; Presser and Luoma 2010) or a single step (Adams et al. 1998; Brix 

et al. 2005; Toll et al. 2005). The multi-step models account for partitioning of Se from water to 

one or more food chain components and then into fish tissue or bird eggs, while the one-step 

models directly relate water Se concentrations to co-located fish tissue or bird egg Se 

concentrations. Regardless of the approach used, the key variable is the Se enrichment factor 

(EF), which relates Se concentrations at the base of the food web (e.g., detritus, algae) to water 

Se. The EF can be an explicit component of a multi-step model and is an implicit component of a 

single step model. The Se EF varies depending on site-specific physical-chemical parameters, 

which influence Se speciation and bioavailability, and site-specific biology, as Se 

bioaccumulation potential varies among different particulates at the base of the food chain. In 

general, Se bioaccumulation potential is higher in biologically productive systems that favor the 

reduction of selenate to selenite or organo-Se compounds. The one-step and multi-step Se 

partitioning models, and their relationship to each other, are shown mathematically as follows: 

 

In general, Se EFs tend to be greater in lentic systems than in lotic systems, although the 

EF distributions for lentic and lotic sites substantially overlap and the EFs may still vary by 

greater than one order of magnitude within lentic and lotic systems. In terms of selecting an EF 

value that would result in a water Se guideline that is broadly protective of most, if not all sites, 
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selection of conservative EFs can result in largely over-protective water Se guidelines where Se 

is naturally elevated or where Se bioaccumulation potential is low. The benefit of the fish tissue-

based Se guideline is to accommodate this site-to-site variability in Se bioaccumulation 

potential, but adoption of an unnecessarily low water Se-based guideline would result in an 

allocation of resources to conduct fish tissue sampling programs that are not necessary. 

Accordingly, it would be useful if the water-based Se guideline could be developed such that it 

accounts for site-specific factors that may modify the Se EF. The following summarizes Se 

partitioning through aquatic food webs and highlights key uncertainties and data gaps. 

3 DATA GAPS ANALYSIS 

For the purposes of this analysis, five primary sources of uncertainty and variability 

associated with the partitioning of Se from the water column to fish eggs were identified. These 

are identified in Figure 1, which provides a generalized schematic diagram of Se partitioning in 

an aquatic food web. The following data gaps analysis is organized by the five primary sources 

of uncertainty and variability, as outlined in Figure 1 (i.e., Sections 3.1 to 3.5). 

 

  
Figure 1. Schematic diagram of selenium bioaccumulation from water to fish eggs. 
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3.1 Influence of Water Chemistry on the Enrichment Factor  

 There are at least three primary components of water chemistry that influence the 

magnitude of the EF for Se: (1) Se speciation; (2) modifying factors that influence Se uptake; and 

(3) the magnitude of the Se concentration in the water. 

3.1.1 Selenium Speciation 

 In the water column, Se predominantly occurs as selenate, selenite, or as reduced 

organic Se compounds. In general, selenate and selenite tend to be predominant, with the 

relative proportion of selenate tending to be greater in well oxygenated waters, such as most 

streams, and the relative proportion of selenite tending to be greater in waters with reducing 

conditions, such as ponds and wetlands. Smaller proportions of organic Se may   

also occur in the water column. Selenium speciation in the water column has an important 

influence on the bioaccumulation potential of Se, as demonstrated by Besser et al. (1993), who 

exposed the alga Chlamydomonas reinhardtii to selenate, selenite, or selenomethionine. The EFs 

for each Se form clearly showed the following pattern of Se bioaccumulation potential: selenate 

< selenite < selenomethionine (Figure 2). Several other studies also have shown greater 

bioaccumulation potential of selenite compared to selenate. Riedel et al. (1996) found that the 

short-term uptake rate of selenite in a natural plankton community was 4-5 times faster than for 

selenate. Similarly, Riedel and Cole (1999) exposed periphyton to 10 µg Se/L as either selenate 

or selenite and observed that the selenite uptake rate was substantially greater (0.0112 L/g-hr 

for selenite versus 0.0045 L/g-hr for selenate). Kiffney and Knight (1990) and Malchow et al. 

(1995) similarly showed that the bioaccumulation potential of selenite was greater than selenate 

in a cyanobacterium and a green alga, respectively.  

 To-date, the relative bioaccumulation potential of selenate, selenite, and organic Se 

compounds has not been extensively studied for a wide variety of algae species or for other 

“particulates”, such as detritus, periphyton, biofilms, and macrophytes. A broader 

understanding of Se bioaccumulation potential among Se species, coupled with site-specific Se 

speciation data, may help to narrow the range of potentially relevant Se EFs for a given site. 
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Figure 2. Selenium enrichment factors (EFs) for the freshwater alga Chlamydomonas reinhardtii 
exposed to selenate, selenite, or selenomethionine in the laboratory. Date from Besser et al. 
(1993). 

 

3.1.2 Influence of Modifying Factors 

 There are potentially several modifying factors that may influence the bioavailability 

and bioaccumulation potential of Se, which in turn would influence the EF. The most well 

known modifying factor is the influence of sulphate (SO4) on selenate uptake. This was most 

clearly shown by Williams et al. (1994), who observed that Se bioaccumulation in green algae 

exposed to a water Se concentration of 11.3 µg/L was approximately four-fold greater when the 

water contained 3.3 mg SO4/L compared to 33 mg SO4/L (Figure 3). The influence of SO4 was 

even more pronounced when algae were exposed to a higher, but less environmentally relevant, 

Se concentration of 107 µg/L (Figure 3). Riedel and Sanders (1996) likewise observed a 

reduction in the uptake rate of selenate with increasing sulphate concentrations. For example, in 

the green alga Chlamydomonas reinhardtii exposed to 10 µg selenate/L, the Se uptake rate 

decreased by approximately 55% as the sulphate concentration increased from approximately 

4.8 to 96 mg/L.  
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As opposed to selenate, Riedel and Sanders (1996) did not observe any influence of 

sulphate on the uptake rate of selenite, although they did observe that increasing phosphate 

concentrations substantially reduced the selenite uptake rate. Yu and Wang (2004a) similarly 

observed that increasing phosphate concentrations reduced selenite uptake by the alga 

Scenedesmus obliquus. Yu and Wang (2004b) exposed C. reinhardtii to a selenite concentration of 2 

µg/L and a corresponding phosphate concentration of 3, 30, or 300 µg/L or a corresponding 

nitrate concentration of 70, 560, or 2800 µg/L. These phosphate and nitrate concentrations were 

intended to mimic different nutrient conditions in natural oligotrophic, mesotrophic, and 

hypertrophic lakes. Selenite uptake significantly decreased as the phosphate concentration 

increased from 3 to 300 µg/L, while nitrate had no clear influence on selenite uptake. Sulphate 

and selenate appear to compete for uptake because both are group VI oxyanions of the form 

XO4 (Brix et al. 2001). 

 

Figure 3. The influence of sulphate (SO4) on enrichment factors (EFs) for selenate (SeO4) in the 
algae Selenastrum capricornutum (Williams et al. 1994; Malchow et al. 1995) and Chlamydomonas 
reinhardtii (Besser et al. 1993). Values above bars are the selenate exposure concentrations in 
µg/L. 
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3.1.3 Influence of Selenium Exposure Concentrations 

The magnitude of the Se concentration in water also influences the magnitude of the EF, 

as EFs tend to be inversely related to the Se concentration in water (i.e., higher EFs are often 

observed at lower water Se concentrations, in both laboratory and field exposures). In the 

laboratory, the inverse relationship between the EF and exposure concentration is usually, but 

not always observed. The data from Williams et al. (1994) and Malchow et al. (1995) 

demonstrate an inverse relationship (Figure 3), as do the data from Besser et al. (1993) for 

selenite and selenomethionine, but not selenate (Figure 2). Conley et al. (2009) observed 

increasing Se concentrations in a complex periphyton community when exposed to increasing 

selenite concentrations for nine days. In this experiment, periphyton were exposed to an initial 

water Se concentration that was not renewed over the exposure period. Because the waterborne 

Se was rapidly depleted in the low Se treatments, there was less Se available for uptake by the 

periphyton. Using a similar exposure method, Conley et al. (2011) reported that the Se EF was 

lowest in the highest selenite concentrations tested (19.2 to 23.1 µg/L), but the relative 

magnitudes of the EFs for the low Se (1.1 to 3.4 µg/L) and moderate Se (5.9 to 8.9 µg/L) were 

variable. 

The inverse relationships among the EFs and water Se concentrations often observed 

emphasizes that constant EFs cannot be assumed in Se partitioning models, even in waters that 

otherwise have the same water chemistry and conditions. 

3.2 Particulate-specific Variability in Selenium Enrichment Factors 

 In addition to the various factors that can influence Se EFs for a given particulate (e.g., 

Se speciation, modifying factors, water Se concentration), the Se EF may also vary substantially 

among particulates collected from the same site. Many field data sets demonstrate this 

variability in Se EFs among particulate types. A good example is Saiki et al. (1993), who 

measured Se concentrations in water and three different particulates (sediment, detritus, and 

filamentous algae) collected from the San Joaquin River, Salt Slough, and Mud Slough 

(California) in spring and fall. Selenium concentrations in detritus were approximately 10- to 

165-fold greater than in sediment (Figure 4). This demonstrate the importance of not only 

understanding how Se concentrations vary among particulate types at a site, but also 

understanding the site-specific food web. In this study the authors noted that the food web was 

detritus-based. If this was not known or considered, and if it was assumed that the Se EF for 

sediment was a representative surrogate, then obviously the Se enrichment potential based on 
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measurement of Se in sediment alone would have resulted in underestimating the Se 

bioaccumulation potential in this study area.  

The data from Saiki et al. (1993) also demonstrate the potential seasonal variability in Se 

EFs. This variability is most important where water Se concentrations vary seasonally, which is 

a common occurrence in areas where Se tends to be mobilized by seasonal weather or irrigation 

events. In Saiki et al. (1993), seasonal EFs varied by a factor of approximately 3 to 10 for the 

three water bodies. Time-varying Se concentrations and the kinetics of partitioning into the 

aquatic food web are important issues for relating Se concentrations in fish tissue back to water. 

Understanding the site-specific food web, as well as seasonal variability in the EFs, is therefore 

critical for identifying representative EFs for a site. 

 

Figure 4. Comparison of Se enrichment factors (EFs) for different particulate types. GT5 = Mud 
Slough; GT4 = Salt Slough; SJR = San Joaquin River. Data from Saiki et al. (1993). 
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some cases. Invertebrate Se TTFs were compiled from laboratory trophic transfer studies and 

from field studies with co-located measurements of Se in invertebrates and their diets (Figures 5 

and 6). Invertebrate Se TTFs were compiled from a range of invertebrate taxa, including 

amphipods, cladocerans, crayfish, and insects (caddisflies, chironomids, crane flies, damselflies, 

mayflies, stoneflies, water boatmen). The median invertebrate Se TTF was 1.2, with 10th and 90th 

percentile TTFs of 0.5 and 2.4, respectively (Figure 5). There are not any clear patterns in how 

TTFs vary among taxa, as insect taxa, for example, are distributed fairly evenly throughout the 

dataset. One factor not reflected in Figure 5 is the influence of the dietary exposure 

concentration on the TTF, which may be inversely related (just like the inverse relationship 

often observed among EFs and water Se concentrations). The TTFs that can be derived from 

laboratory tests are usually inversely related to the dietary exposure concentration, although 

this slope is not always statistically significant (p < 0.05). An interesting result from the Conley 

et al. (2011) study is the influence of the dietary dose on the TTF, who observed that TTFs in the 

mayfly were approximately 60% less in mayflies that were provided twice as much periphyton 

as a food source. The authors attributed this to reduced Se concentrations in mayflies due to 

growth dilution in mayflies provided more food. 

Even though the magnitude and variability in Se TTFs for invertebrates is much less 

than that observed for Se EFs, the invertebrate TTF still is an important factor when relating a 

fish tissue-based Se guideline back to a water Se concentration. In a multi-step model, a factor of 

two difference in the TTF results in a factor of two difference in the water Se concentration (e.g., 

a difference between a guideline of 5 µg/L versus 10 µg/L, which can be important in 

managing Se).  

3.4 Variability in Fish Selenium Trophic Transfer Factors 

Overall, Se TTFs for whole body fish tissue tend to be lower for fish than for 

invertebrates, and less variable among species. Whole body fish Se TTFs are almost always less 

than 2.0, with the median and 90th percentile TTFs from laboratory studies being 0.7 and 1.5, 

respectively (Figure 7). The two highest whole body fish TTFs of 4.4 and 5.4 are from low fish 

provided low Se diets containing 0.4 and 0.23 µg Se/g dry wt., respectively. The high TTFs 

reflect the essential nature of Se, with fish actively regulating their internal Se concentrations. 

The whole body Se TTF for fish represents a relatively minor uncertainty. Presser and Luoma 

(2010), for example, recommended assuming a whole body fish TTF of 1.1 across species. A 
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greater source of variability is the Se TTF in fish eggs or ovaries, as discussed in the following 

section. 

 

 

Figure 5. Cumulative distribution of Se trophic transfer factors (TTFs) for invertebrates. Data from 
Besser et al. (1989; 1993), Birkner (1978), Casey (2005), Conley et al. (2009; 2011), Guan and Wang 
(2004), Malchow et al. (1995), Saiki et al. (1993), and Thomas et al. (1999).  
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Figure 6. Relationship among Se trophic transfer factors (TTFs) for invertebrates versus the 
dietary Se concentration. Inverse relationships among TTFs and dietary concentrations are 
observed for most species, but slope is significant only for the D. magna data from Besser et al. 
(1993). 
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that a fathead minnow TTF of 15.2 is not included; this very high TTF is based on the control 

organisms and is driven by the very low dietary Se concentration of 0.4 µg/g dry wt. As 

discussed above for whole body fish (and invertebrates), there is an overall inverse relationship 

between the egg or ovary Se TTFs and dietary Se concentrations (Figure 10). 

Orr et al. (2012) measured and modeled Se concentrations in the ovaries of westslope 

cutthroat trout in lentic and lotic water bodies. In lentic water bodies, ovary Se concentrations 

increased linearly with increasing benthic invertebrate Se concentrations. Based on the linear 

regression relationship, the diet-to-ovary Se TTFs range from approximately 1.7 to 2.8 over the 

range of the benthic invertebrate Se concentrations measured, with an inverse relationship 

observed. The TTF was 2.0 at an egg Se concentration of 17 µg/g dry wt. No relationship 

between ovary Se and dietary Se was observed in lotic systems (i.e., ovary Se concentrations did 

not increase with increasing dietary Se concentrations), meaning that the TTF is strongly 

inversely related to the dietary Se concentration (the mean TTF was 2.5).  

 

 

Figure 7. Cumulative distribution of laboratory-based Se trophic transfer factors (TTFs) for whole 
body fish. Data from Bennett et al. (1986), Bertram and Brooks (1986), Cleveland et al. (1993), 
Coyle et al. (1993), Hardy et al. (2010), Hamilton et al. (1990), Lemly (1993), Ogle and Knight (1989), 
and Vidal et al. (2005).  
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Figure 8. Mean ratios of selenium concentrations in fish eggs or ovaries to whole body selenium. 

 

Figure 9. Mean egg- or ovary-based Se TTFs for fish. 
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Figure 10. Relationship between egg- or ovary-based Se TTFs for fish and dietary selenium 
concentrations. 
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compounding them). The following highlights key uncertainties in the bioaccumulation and 

trophic transfer of Se from water to fish eggs and ovaries. 

1. The influence of Se speciation, modifying factors, and exposure concentration on the 

EFs for a variety of relevant particulate types has not been well studied. Most studies 

have focused on unicellular algae – how do the EFs vary for particulates such as 

detritus, periphyton, biofilm, and macrophytes? 

2. Can we develop more refined categories of generic water-based Se guidelines based 

on key water chemistry and food chain characteristics? 

3. Linking time-varying water Se concentrations to Se concentrations in fish ovaries 

and eggs – what are the appropriate EFs and TTFs (multi-step model) or BAFs (one-

step model)? 

4. Selenium TTF data for eggs and whole body tissue in a broader range of fish species 

are needed. 

5. Methods are needed to develop a site-specific Se guideline for water. It is assumed 

that fish eggs would initially be sampled at a site to determine compliance with an 

egg-based Se guideline (presumably after a water-based Se screening threshold is 

exceeded). If the egg-based Se guideline is exceeded, how do you develop a water-

based Se guideline? Options exist, such as the Bayesian one-step model approach 

described in Brix et al. (2005) and the multi-step model approach described in 

Presser and Luoma (2010). 

The studies being conducted by Nautilus Environmental, Natural Resources Canada 

(NRCan), and Golder Associates will help to address some of the above questions and data gaps 

highlighted above. Nautilus Environmental is testing the influence of sulphate on Se uptake 

(i.e., the EF) by a diatom, which will help us to better understand Se uptake in an additional 

particulate with limited data (i.e., diatoms) and how varying sulphate concentrations influences 

the uptake of varying Se concentrations. NRCan is using field-collected Se-enriched sediments 

to evaluate the uptake, trophic transfer, and toxicity of Se to the benthic insect Chironomus 

dilutus. This will provide useful information on Se fate and effects at the base of the food chain. 

Finally, Golder Associates will use existing data to develop a Se bioaccumulation model for use 

in the derivation of water quality guidelines for Se. This model will consider variation in Se 

bioaccumulation among sites (e.g., lotic vs. lentic), between species, and within species. The 

resulting model may be compared to other Se bioaccumulation modeling approaches, such as 
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(Toll et al. 2005) and (Presser and Luoma 2010). The ultimate goal is that the information from 

the above three studies will contribute to a framework for relating a tissue-based Se guideline to 

a appropriate site-specific water quality guidelines for Se. 
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